Use of Molecular modeling to determine the interaction and competition of gases within coal for Carbon Dioxide sequestration
نویسندگان
چکیده
A 3-dimensional coal structural model for the Argonne Premium Coal Pocahontas No. 3 has been generated. The model was constructed based on the wealth of structural information available in the literature with the enhancement that the structural diversity within the structure was represented implicitly (for the first time) based on image analysis of HRTEM in combination with LDMS data. The complex and large structural model (>10,000 carbon atoms) will serve as a basis for examining the interaction of gases within this low volatile bituminous coal. Simulations are of interest to permit reasonable simulations of the host-guest interactions with regard to carbon dioxide sequestration within coal and methane displacement from coal. The molecular structure will also prove useful in examining other coal related behavior such as solvent swelling, liquefaction and other properties. Molecular models of CO2 have been evaluated with water to analyze which classical molecular force-field parameters are the most reasonable to predict the interactions of CO2 with water. The comparison of the molecular force field models was for a single CO2-H2O complex and was compared against first principles quantum mechanical calculations. The interaction energies and the electrostatic interaction distances were used as criteria in the comparison. The ab initio calculations included Hartree-Fock, B3LYP, and Möller-Plesset 2, 3, and 4 order perturbation theories with basis sets up to the aug-cc-pvtz basis set. The Steele model was the best literature model, when compared to the ab initio data, however, our new CO2 model reproduces the QM data significantly better than the Steele force-field model.
منابع مشابه
Study and Comparison of the carbon sequestration by Atriplex canescens and Hulthemia persica in Nowdahak Range Research Station, Qazvin province
Greenhouse gases (GHG) are a serious threat to humans and environment. Greenhouse gases have been different sources, but main factors are fossil fuels, industrial processes, deforestation and agriculture. What is now more than ever before should be considered according to the role of forests and rangelands in atmospheric carbon sequestration? Carbon sequestration is to changes in atmospheric ca...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملCapability Investigation of Carbon Sequestration in Two Species (Artemisia sieberi Besser and Stipa barbata Desf.) Under Different Treatments of Vegetation Management (Saveh, Iran)
The rangelands, as one of the largest dynamic biomes in the world,have very capabilities. Regulation of greenhouse gases in the Earth's atmosphere,particularly carbon dioxide as the main greenhouse gases, is one of these cases.The attention to rangeland, as cheep and reachable resources to sequestrate thecarbon dioxide, increases after the Industrial Revolution. Rangelands comprise thelarge par...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملModeling of Combustion and Carbon Oxides Formation in Direct Injection Diesel Engine
When looking at the effects of diesel engine exhaust on the environment, it is important to first look at the composition of the exhaust gases. Over 99.5% of the exhaust gases are a combination of nitrogen, oxygen, carbon dioxide, and water. With the exception of carbon dioxide, which contributes about 5% of the total volume, the diesel engine exhaust consists of elements which are part of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006